Phy 131 - Assignment 8

- A. 1. <u>Yes.</u> Equilibrium means a state of balance, not a state of rest. If the forces and torques on a body balance out to totals of zero, it continues to move as it did originally. (An object at rest remains at rest: Static Equilibrium. An object in motion remains in motion: Dynamic Equilibrium.)
- 2. The first step is the free body diagram. The equations come from the diagram; if you skip the diagram, you will probably get lousy equations. ("Free body diagram" means a picture of the beam showing all of the forces on it.)

Each arrow on the diagram times $r \sin\theta$ is a torque. After you do components, each vertical arrow is a term in ΣF_v . Each horizontal arrow is a term in ΣF_x .

$$\begin{split} \Sigma \gamma_{p} &= 0 \\ V(0) + H(0) = (700)(x) - (200)(3n) - (80)(6n) + T \sin 60^{\circ}(6n) = 0 \\ -700 - 600 - 480^{\circ} + 5.196T = 0 \\ 5.196T = 1780 \implies T = 342.57 \\ \Xi F_{x} &= 0 \\ H - T \cos 60 = 0 \implies H = (342.57) \cos 60^{\circ} = 171n \text{ Morigontal} \\ \Sigma F_{y} &= 0 \\ 342.57n \\ V + T \sin 60 - 700 - 200 - 80 = 0 \\ V - 683 = 0 \implies V = 683 n \text{ Component}. \end{split}$$

B. 1. The cross product of two vectors is $\vec{A} \times \vec{B} = |\mathbf{A}| |\mathbf{B}| \sin\theta \hat{n}$, where \hat{n} is a unit vector perpendicular to both \vec{A} and \vec{B} .

For the 1st and 4th parts: If a vector is crossed with itself, the angle is 0° ; since $\sin 0^{\circ} = 0$, the cross product is $\vec{0}$ in those cases.

For the others: Since $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} are all perpendicular to each other, $\sin 90^\circ = 1$. The magnitudes of all these vectors are also one, (that's what it means to be a unit vector) so the answers are unit vectors. Exactly which unit vector can be determined with the right hand rule. For example, the third one, $\hat{\jmath}$ x $\hat{\imath}$:

Wrap your fingers around the origin, pointing from the first vector toward the second. (The cross product is not commutative; pay attention to which vector is on which side of the "x" symbol.) Your thumb points in the direction of \hat{n} .

See me if you'd like a demonstration.

So, the answers are: $\vec{0}$, \hat{k} , - \hat{k} , $\vec{0}$, \hat{j} , - \hat{i} .

2.

See solution to previous problem for free body diagram.

$$\Sigma T_{p} = 0$$

$$V(0) + H(0) - (700)(x) - (200)(3n) - (80)(6) + T \sin 60^{\circ}(6n) = 0$$

$$-700X - (600 - 480 + 5.196 T = 0)$$

$$-700X - (600 - 480 + 4676 = 0)$$

$$-700X + 3596 = 0$$

$$X = \frac{3596}{700} = 5.14 \text{ m}$$

C.

Only because it's easier to write, I'll have the forces in kilonewtons instead: 784 kN and 294 kN. Taking torques about point A,

$$\begin{array}{c}
\Sigma F_{Y} = 0 \\
n_{A} + 480 - 784 - 294 = 0 \\
n_{A} - 598 = 0 \\
\hline
n_{A} = 598 \text{ kN}
\end{array}$$

(An alternate approach instead of using $\Sigma F_y = 0$ would be to take torques about point B.)

E. Take torques about the rear wheel (so that the unknown forces there get multiplied by zero):

The easiest way to get B and C is to use forces now. Every vertical arrow on the picture becomes a term in the y equation. Every horizontal arrow becomes a term in the x equation:

$$\Sigma F_y = 0$$
 $\Sigma F_x = 0$
 $A + B - 50 = 0$ $C - 1.2 = 0$
 $18.6 + B - 50 = 0$ $C = 1.20 \text{ kN}$
 $B = 50 - 18.6 = 31.4 \text{ kN}$

F.

ans: $370\hat{i} + 900\hat{j} N$

A is the force from the nail. H and V are the horizontal and vertical components of the force from the point of contact, point P.

$$\Sigma \tau_{\mathbf{p}} = 0$$
(5 cm)(sin 120°)(A)
- (30 cm)(sin 90°)(150 N) = 0
4.330 A = 4500
A = 1039 N
Rounding, 1.04 kN ans.

Components: 1039 N in that direction is equivalent to 900 N down and 520 N left acting together.

$$\Sigma F_{x} = 0$$

$$-(1039 \text{ N})(\sin 30^{\circ}) + H + 150 \text{ N} = 0$$

$$-520 + H + 150 = 0$$

$$H = 370 \text{ N}$$

$$\Sigma F_{y} = 0$$

$$-(1039)(\cos 30^{\circ}) + V = 0$$

$$V = 900 \text{ N}$$