Phy 131 - Assignment 2

A. 1.

Your arrow should point up and to the left. (It should be the $\vec{v}_f - \vec{v}_i$ as shown.)

2.

given:
$$m = 4 + 6$$
 $\overrightarrow{N_0} = 3\hat{i} = 3\hat{i} = 6$
 $\overrightarrow{N_0} = (8\hat{i} + 10\hat{j}) = 6$
 $\overrightarrow{N_0} = (8\hat{i} + 10\hat{j}) - (3\hat{i}) = 6$
 $\overrightarrow{A} = \frac{A\overrightarrow{V}}{At} = \frac{(8\hat{i} + 10\hat{j}) - (3\hat{i})}{8} = \frac{5\hat{i} + 10\hat{j}}{8} = \frac{5\hat{i} + 6\hat{j}}{8} = \frac{5\hat{i} + 5\hat{j}}{8} = \frac{5\hat{i} + 6\hat{j}}{8} = \frac{5\hat{i} + 6\hat{j}}{8} = \frac{5\hat{i} + 5\hat{j}}{8} = \frac{5\hat{i}}{8} = \frac{5\hat{i}}$

(The question does not say that F should be in component form. I just left it that way because it's easiest. But if you gave the answer as 5.59 N at 63.4°, that's ok too.)

b)
$$|F| = \sqrt{F_{\times}^2 + F_{\times}^2}$$
 (Pythagorean thm.)
= $\sqrt{(2.5)^2 + 5^2} = \sqrt{31.25} = \sqrt{5.59} ANS$

- B. 1. <u>No, never</u>. The magnitude of a vector is just how "long" it is, regardless of its direction. (Similar to the absolute value of a scalar, hence the use of the same symbol.)
- 2. $\underline{\text{Displacement}} = 0$. Displacement is a vector, so you add the displacements like this:

zero.)

(The resultant drawn from where you started to where you ended up is

<u>Distance traveled = 6 m</u>. Distance is a scalar, so you add the distances like this: 2 + 1 + 2 + 1 = 6.

C.

$$F_{1} = 60 i + 103.9 j$$

$$120 \cos 30^{\circ} = 103.9 \frac{1}{30^{\circ}} = 0$$

$$80 \sin 5^{\circ} = 20.7$$

$$F_{2} = -20.7 i + 77.3 j$$

$$F_{1} + F_{2} = (60 - 20.7) i + (103.9 + 77.3) j$$

$$= 39.3 i + 181.2 j$$

$$R = \sqrt{39.3^{2} + 181.2^{2}}$$

$$= 185.4$$

$$O = \cot \left(\frac{181.2}{39.3}\right) = 77.8$$

$$ANS : 185 N = 477.8$$

$$(Rounding to 3 = ig. figures)$$

- D. Step 1: Choose a scale. The larger the picture the more accurate, so use the largest convenient scale that fits on the sheet of paper. I used 1 inch = 1 "unit" on my original, but the scanned copy below is a little under 3/4 of that size.
- 2. Draw \vec{A} and \vec{B} head-to-tail, carefully measuring the lengths and directions. A ruler and protractor will be provided if this is the quiz question.
- 3. Draw the resultant from the tail of \vec{A} to the head of \vec{B} .

F. 1. a. No, b. No, c. yes, d. no. Velocity has a direction; the other three things do not.

2.

Magnitude: $a = \sqrt{5.5^2 + 2.6^2} = 6.08 \text{ m/s}^2$

Direction: $\theta = \arctan\left(\frac{2.6}{5.5}\right) = 25.3^{\circ}$