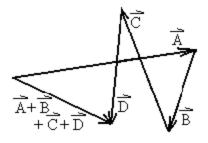
You may refer to this handout on quizzes and exams. Do not add additional information.

Sec. 1:

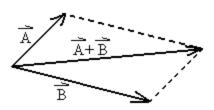
Velocity:
$$v = \frac{dx}{dt} = \text{slope of } \frac{x}{t}$$
 Average velocity: $v_{av} = \frac{\Delta x}{\Delta t}$

Acceleration:
$$a = \frac{dv}{dt} = \text{slope of } \frac{1}{\Delta t}$$
 Average acceleration: $a_{av} = \frac{\Delta v}{\Delta t}$

Motion with constant acceleration:


$$\Delta x = v_{av}t \qquad v_{av} = \frac{1}{2}(v_i + v_f) \qquad v_f = v_i + at$$
$$\Delta x = v_i t + \frac{1}{2}at^2 \qquad v_f^2 = v_i^2 + 2a\Delta x$$

$$g = 9.8 \text{ m/s}^2 = 32.2 \text{ ft/s}^2$$


Sec. 2: Memorize: Definitions of trig functions, and Pythagorean theorem.

Graphical vector addition:

Head to tail method:

Parallelogram rule:

Unit vectors:

$$|\hat{i}| = |\hat{j}| = |\hat{k}| = 1$$

$$z$$

If
$$\overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
 and $\overrightarrow{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ then $\overrightarrow{A} + \overrightarrow{B} = (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j} + (A_z + B_z) \hat{k}$
$$n\overrightarrow{A} = nA_x \hat{i} + n A_y \hat{j} + nA_z \hat{k} \quad (n = some \ scalar)$$

$$\overrightarrow{A} - \overrightarrow{B} = \overrightarrow{A} + (-\overrightarrow{B})$$

$$\overrightarrow{B}$$

$$|\overrightarrow{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Sec. 3:

Memorize: Newton's three laws, and relationship between weight and mass.

Static friction: $f_S \leq \mu_S n$

Kinetic (sliding) friction:
$$f_k = \mu_k n$$

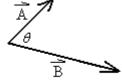
f = force of friction, $\mu = coefficient of friction$, n = normal force

Sec. 4:

Projectiles: Treat each component like one dimensional motion.

$$R = \frac{v_i^2 \sin(2\theta_i)}{\varrho}$$

Centripetal force:


$$F = \frac{m v^2}{r}$$

 $F = \frac{m v^2}{r}$ Centripetal
acceleration: $a = \frac{v^2}{r}$

$$a = \frac{v^2}{r}$$

Sec. 5:

Memorize: Formulas for kinetic energy, gravitational potential energy and total energy. Understand conservation of energy.

Work: $W = \vec{F} \cdot \vec{s}$ $\vec{F} =$ force, $\vec{s} =$ displacement ($W = \int \vec{F} \cdot d\vec{s}$ if force is not constant.)

Work-energy theorem:

$$W = \Delta KE$$
 (W = work done by any kinds of forces)

$$E_i + W_{nc} = E_f$$
 (W_{nc} = work done by non-conservative forces.)

<u>Se</u>c. 6:

Memorize: Formula for momentum. Understand conservation of momentum.

Power:
$$P = \frac{dE}{dt}$$

Average power:
$$P_{av} = \frac{W}{t} = \frac{\Delta E}{\Delta t}$$

also,
$$P = \overline{F} \cdot \overline{v}$$

Impulse-momentum theorem: $\vec{1} = \Delta \vec{p}$ where $\vec{1} = \vec{F} \Delta t$ and $\vec{p} =$ momentum, not power.

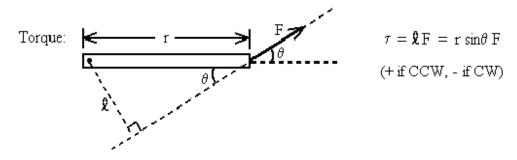
Elastic collision: one where mechanical energy is conserved.

<u>Sec. 7</u>: REMEMBER: Some equations require use of radians.

Angular velocity:
$$\omega = \frac{\mathrm{d}\theta}{\mathrm{dt}}$$

Average angular velocity:
$$\omega_{av} = \frac{\Delta \theta}{\Delta t}$$

Angular acceleration:
$$\alpha = \frac{d\omega}{dt}$$


Angular acceleration: $\alpha = \frac{d\omega}{dt}$ Average angular acceleration: $\alpha_{av} = \frac{\Delta\omega}{\Delta t}$

Tangential displacement, velocity, and acceleration:
$$s = r\theta$$
 $v_T = r\omega$ $a_T = r\alpha$

$$v_m = rc$$

Motion with constant angular acceleration:

$$\Delta\theta = \omega_{av}t \qquad \omega_{av} = \frac{1}{2}(\omega_i + \omega_f) \qquad \omega_f = \omega_i + \alpha t$$
$$\Delta\theta = \omega_i t + \frac{1}{2}\alpha t^2 \qquad \omega_f^2 = \omega_i^2 + 2\alpha \Delta\theta$$

Moments of inertia:

Particle of mass m, following orbit of radius r: $I = mr^2$. System of such particles: $I = \Sigma m_i r_i^2$

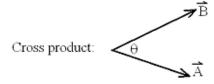
Rigid bodies, total mass = M, outside radius = R

Hoop or tube, rotating about center: $I = MR^2$

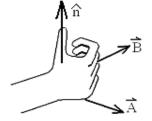
Solid cylinder or disk, rotating about center: $I = (\frac{1}{2})MR^2$

Solid sphere, rotating about center: $I = (2/5)MR^2$

Thin spherical shell, rotating about center: $I = (2/3)MR^2$


Thin rod, length L, rotating about center: $I = (1/12)ML^2$

Thin rod, length L, rotating about one end: $I = (1/3)ML^2$


Rotational version of Newton's 2nd law: $\Sigma \overline{\tau} = I\overline{\alpha}$

Rotational kinetic energy: $KE_R = \frac{1}{2} I \omega^2$

Sec. 8:

 $\overrightarrow{A} \times \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \sin \theta \hat{n}$

Torque: $\vec{\tau} = \vec{r} \times \vec{F}$ ($\vec{\tau}$ points along thumb if fingers point in direction of rotation.)

First & second conditions of equilibrium: 1. $\Sigma \overrightarrow{F} = 0$ 2. $\Sigma \overrightarrow{\tau} = 0$

Sec. 9:

Total kinetic energy: $KE = \frac{1}{2} m v^2 + \frac{1}{2} I \omega^2$

Work done by a torque: $W = \tau \theta$ $(W = \int \overrightarrow{\tau} \cdot d\overrightarrow{\theta} \text{ if } \overrightarrow{\tau} \text{ is not constant.})$

Angular momentum: $\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$, or $L = I \overrightarrow{\omega}$

Understand conservation of angular momentum.

Sec. 10: Memorize: Relationship between frequency and period.

Hooke's law: $\overline{F} = -k \vec{x}$ (F = force, k = spring constant, x = displacement from equilibrium.)

Harmonic oscillator:

Displacement: $x = A \cos(\omega t + \phi)$ where $\omega = 2\pi f = \sqrt{\frac{k}{m}}$ (f = frequency.) Velocity: $v = -v_{max} \sin(\omega t + \phi)$ where $v_{max} = \omega A$ Acceleration: $a = -a_{max} \cos(\omega t + \phi)$ where $a_{max} = \omega^2 A$

Elastic potential energy: $U_s = \frac{1}{2} k x^2$

Pendulum: $\omega = \sqrt{\frac{g}{L}}$ $(\omega = 2\pi f)$

Memorize: Relationship between wavelength, speed and frequency.

Harmonic wave traveling to the right: $y = A \sin(kx - \omega t + \phi)$

Harmonic wave traveling to the left: $y = A \sin(kx + \omega t + \phi)$

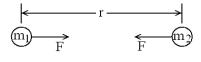
Angular wave number: $k = \frac{2\pi}{\lambda}$ Angular frequency: $\omega = 2\pi f$

Speed of string waves: $v = \sqrt{\frac{F}{u}}$ $F = string tension (force), \mu = mass per unit length$

Speed of sound in air: $v = \sqrt{402T}$ T = kelvin temperature (Celsius + 273)

Intensity: $I = \frac{power}{area}$

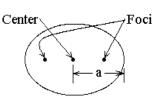
Intensity vs. distance: $\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$


Sound level in decibels: $\beta = 10 \log \left(\frac{I}{10^{-12} W/m^2} \right)$ Doppler effect: $f' = f \frac{(v \pm v_o)}{(v \mp v_s)}$ Top: toward Bottom: away

 $v = \text{speed of waves}, v_o = \text{observer's speed}, v_s = \text{source's speed}$

Sec. 12: Memorize: Ideal gas law.

 $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$


Law of universal gravitation:

$$\mathrm{F} = \frac{\mathrm{G}\,m_1\,m_2}{r^2}$$

Kepler's laws:

- 1. Orbits are elliptical, with sun at one focus.
- 2. Line from sun to planet sweeps through equal areas in equal times.
- 3. $T^2 = \frac{4\pi^2}{G(m_c + m_c)}a^3$ T = period, a = semi-major axis

Sec. 13: Change in length:
$$\Delta L = L_0 \alpha \Delta T$$

Change in volume: $\Delta V = V_{o} \beta \Delta T$ $\beta \approx 3 \alpha$

Heat flow due to a change of temperature: $Q = m c \Delta T$ c = specific heat

Heat flow due to a change of state Q = mLf or Q = mLv L=heat of fusion or vaporization

Conduction:

$$\frac{dQ}{dt} = -kA\frac{dT}{dx}$$

$$T_{2} \underbrace{\begin{vmatrix} k_{1} & k_{2} & \dots & \\ k_{1} & L_{2} & \dots & \\ \end{bmatrix}}_{T_{1}} \underbrace{\frac{\Delta Q}{\Delta t}}_{T} = -\underbrace{\frac{A(Z_{2} - L_{1})}{\sum_{i} (L_{i} / L_{2})}}_{T_{1}}$$

$$L/k = \text{"R-VALUE"}$$

dQ/dt = Rate of heat flow

k = Thermal conductivity

A = Area dT/dx = Temp. gradient

Stefan's Law: $P = \sigma AeT^4$

P = Power Radiated, $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4$, A = Area, e = Emissivity (0 to 1) T = Temp.

Sec. 14: Memorize: Definitions of P = pressure and ρ = density.

Variation of pressure with depth: $\Delta P = -\rho g \Delta h$

Pascal's Principle: P increase at one point in an enclosed fluid = P increase at any other point.

Archimedes' Principle: Buoyant force = weight of displaced fluid = $(\rho V)g$

Equation of continuity. Av = constant (v = speed)

Bernoulli's equation: $P + \frac{1}{2} \rho v^2 + \rho gh = constant$

MATHEMATICAL BACKGROUND:

Geometric Formulas (r = radius, h = height):

Circumference of a circle or sphere: $2\pi r$ Area of a circle: πr^2

Area of a circular cylinder (excluding ends): $2\pi rh$ Area of a sphere: $4\pi r^2$

Volume of a circular cylinder: $\pi r^2 h$ Volume of a sphere $\frac{4}{3}\pi r^3$

Quadratic Formula: If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

<u>Logarithms</u>: if $x = b^y$ then $log_b(x) = y$ (b = base)

$$\log (xy) = \log x + \log y \qquad \qquad \log (x/y) = \log x - \log y$$

$$\log (x^{a}) = a \log x \qquad \qquad \log_{b} (b^{x}) = x$$

Derivatives:

If
$$y = ax^n$$
 then $\frac{dy}{dx} = a(nx^{n-1})$ where a & n are constants $\neq 0$

If
$$y = a$$
 constant, then $\frac{dy}{dx} = 0$

Example: If
$$y = 7x^3 + 4x + 8$$
, then $dy/dx = 21x^2 + 4 + 0$

Product rule: If y = f(x)g(x), then $\frac{dy}{dx} = f\frac{dg}{dx} + g\frac{df}{dx}$ (First times the derivative of the second + second times the derivative of the first.)

Chain rule: If y = f(g(x)), then $\frac{dy}{dx} = \frac{df}{dg} \frac{dg}{dx}$ (Derivative of what's outside the parentheses times derivative of what's inside the parentheses. Example: If $y = (7x)^3$ then $dy/dx = [3(7x)^2][7]$.)

Some Fundamental Constants:

Gravitational constant: $G = 6.672 \times 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$

Speed of light: $c = 2.998 \times 10^8 \text{ m/s}$

Electron rest mass: $m_e = 9.110 \times 10^{-31} \text{ kg}$

Proton rest mass: $m_p = 1.673 \times 10^{-27} \text{ kg}$

Neutron rest mass: $m_n = 1.675 \times 10^{-27} \text{ kg}$

Universal gas constant: R = 8.314 J/mole·K

Avogadro's Number: $N_0 = 6.022 \times 10^{23}$ molecules / mole

Boltzmann's constant: $k = 1.381 \times 10^{-23} \text{ J/K}$

Some Physical Properties:

Density of air at 20°C and 1 atmosphere ____1.29 kg / m³

Speed of sound in air at 20°C and 1 atm. ____343 m/s

Density of water at 20° C ______ $1000 \text{ kg} / \text{m}^3 \text{ (=1.0 gram / cm}^3\text{)}$

Mass of earth $\underline{\hspace{1cm}}$ 5.99 x 10^{24} kg

Radius of earth $\underline{\hspace{1cm}}$ 6.37 x 10^6 m

Standard atmospheric pressure ______ 1.013 x 10⁵ Pa

Approximate Coefficients of Friction:

	μ_{S}	μ_{k}		μ_{S}	μ_{k}
wood on wood	0.5	0.3	rubber on dry concrete	1.0	0.8
steel on steel	0.74	0.57	rubber on wet concrete	0.7	0.5
teflon on teflon	0.04	0.04	metal on ice	0.03	0.01
glass on glass	0.94	0.40			

Expansion Coefficients (near room temperature):

	α (°C ⁻¹)		β (°C ⁻¹)
Aluminum	24×10^{-6}	Ethyl alcohol	1.12×10^{-4}
Brass & bronze	19×10^{-6}	Benzene	1.24×10^{-4}
Copper	17×10^{-6}	Acetone	1.5×10^{-4}
Glass (ordinary)	9 x 10 ⁻⁶	Glycerin	4.85×10^{-4}
Glass (pyrex)	3.2×10^{-6}	Mercury	1.82×10^{-4}
Lead	29×10^{-6}	Gasoline	9.6×10^{-4}
Steel	11×10^{-6}		
Concrete	12×10^{-6}		
Vinyl siding	150×10^{-6}		

Specific heats (at 25°C):

Substance	cal/g.°C	J/kg·°C	Substance c	al/g.°C	J/kg·°C
Aluminum	0.215	900	Silver	0.056	234
Concrete	0.2	840	Tin	0.054	226
Copper	0.0924	387	Zinc	0.092	385
Gold	0.0308	129			
Ice(at -5°C)	0.50	2090	Ethyl alcohol	0.58	2400
Iron & Steel	0.107	448	Mercury	0.033	140
Lead	0.0305	128	Water	1.00	4186
			Steam (1atm)	0.48	2010
			&100	0	

Heat of Fusion of water = $79.6 \text{ cal/g} = 3.34 \text{ x } 10^5 \text{ J/kg}$ Heat of Vaporization of water = $539 \text{ cal/g} = 2.26 \text{ x } 10^6 \text{ J/kg}$

Thermal Conductivities, in W/m·°C (solids at 25°C, gases at 20°C):

Aluminum	238	Asbestos	0.08	Air	0.0234
Copper	397	Concrete	0.8	Helium	0.138
Gold	314	Diamond	2300	Hydrogen	0.172
Iron	79.5	Glass	0.8	Nitrogen	0.0234
Lead	34.7	Ice	2	Oxygen	0.0238
Silver	427	Rubber	0.2		
Wood	0.08	Water	0.6		

Units:

St	tandard SI Unit:	Conversion Factors:
LENGTH	meter = m	1 m = 3.281 ft, 1 mile = 1609 m = 5280 ft, 1 inch = 2.54 cm
TIME	second = s	1 hour = 3600 s , 1 solar day = $86,400 \text{ s}$, 1 solar year = $3.156 \times 10^7 \text{ s}$
MASS	kilogram = kg	1 kg weighs 2.203 lb if $g = 9.80 \text{ m/s}^2$, 1 kg = .06852 slug
VOLUME	m^3	1 Liter = 10^{-3} m ³ = 10^{+3} cm ³
SPEED	m/s	1 mi/hr = 0.4470 m/s = 1.467 ft/sec
FORCE	newton = N	1 N = 0.2248 pound
ENERGY& WORK	joule = J	1 calorie = 4.186 J. 1 J = 0.7376 ft·lb, 1 BTU = 252 cal
POWER	watt = W	1 horsepower = $745.7 \text{ W} = 550 \text{ ft} \cdot \text{lb/sec}$
ANGLE	radian = rad	1 revolution = $360^{\circ} = 2\pi \text{ rad}$
FREQUENCY	hertz = Hz	1 Hz = 60 rev/min = 1 cycle/sec
IMPULSE & MOMENTUM	$kg \cdot m/s = N \cdot S$	
TEMPERATURE	kelvin = k	$T ext{ (in kelvins)} = T ext{ (in Celsius)} + 273.15$
PRESSURE	$pascal = N/m^2$	1 atmosphere = $1.013 \times 10^5 \text{ Pa} = 14.70 \text{ lb/in}^2$

SI prefixes:

	Prefix:	Abbreviation:	Power:	Prefix:	Abbreviation:
10^{-24}	yocto	y	10^{1}	deka	da
10^{-21}	zepto	Z	10^{2}	hecto	h
10^{-18}	atto	a	10^{3}	kilo	k
10^{-15}	femto	f	10^{6}	mega	M
10^{-12}	pico	p	10^{9}	giga	G
10^{-9}	nano	n	10^{12}	tera	T
10^{-6}	micro	μ	10^{15}	peta	P
10^{-3}	milli	m	10^{18}	exa	E
10^{-2}	centi	c	10^{21}	zetta	Z
10^{-1}	deci	d	10^{24}	yotta	Y