PHY 131

THINGS TO KNOW

The following items were deliberately left off of the "Tables and Formulas" handout because you should know them.

sec. 2:

Definitions of trig functions:

$$\sin\theta = \text{opp/hyp}, \quad \cos\theta = \text{adj/hyp}, \quad \tan\theta = \text{opp/adj}$$

Pythagorean theorem: $A^2 = B^2 + C^2$

sec. 3:

Newton's 1st: If no net force, a body follows a straight line at a constant speed.

Newton's 2^{nd} : $\Sigma F = ma(\Sigma \text{ means summation.})$

Newton's 3rd (in sec 6, actually): If object A exerts a force on object B, then B exerts an equal and opposite force on A.

Weight: W = mg

sec. 5:

Kinetic energy: $KE = \frac{1}{2}mv^2$

Gravitational potential energy: $U_g = mgh$

Total mechanical energy: E = KE + U

Conservation of energy: Total energy (mechanical + all other forms) of an isolated system is constant.

<u>sec. 6</u>:

Momentum: p = mv

Conservation of momentum: Total momentum of an isolated system (no external forces) is constant. sec. 9:

Conservation of angular momentum: If no external torques, a system's total angular momentum is constant.

sec 10:

T = 1/f (T = period, f = frequency)

sec 11:

 $v = f\lambda$, $f = v/\lambda$, $\lambda = v/f$ (v = wave's speed, f = frequency, $\lambda =$ wavelength

sec.12:

pressure: P = F/A (force per unit area)

Ideal gas law: PV = nRT

P = absolute pressure, V = volume, n = number of moles, R = gas constant, T = absolute temperature sec 14:

Definition of density: $\rho = m/V$ (mass per unit volume)