

$$742 \sin 39^{\circ}$$
 given: $\Delta Y = 25 \text{ m}$, $N_{iy} = 26.43^{\text{m/s}}$
 $= 26.4 \text{ m/s}$ $\alpha_{y} = 9.8 \text{ m/s}^{2}$ (down = Poz .)
find: t

$$\Delta Y = N_{14} t + 5Q_1 t^2$$

 $25 = 26.4 t + 5(9.8) t^2$
 $0 = 4.9 t^2 + 26.4 t - 25$

Quadratic formula:
$$t = \frac{-26.43 \pm \sqrt{26.43^2 - 4(4.9)(-25)}}{2(4.9)}$$

$$= \frac{-26.43 \pm \sqrt{698.6 + 490}}{9.8} = \frac{-26.43 \pm 34.47}{9.8}$$

Pick the positive noot: At court hit bottom before it was thrown:
$$-26.43+34.47 = \frac{8.04}{9.8} = \left[.820 \text{ sec} \right]$$

- 5. a. <u>Negative</u>, <u>negative</u>, <u>negative</u>. A freely falling object's acceleration is 9.8 m/s² <u>down</u> regardless of how it is moving.
- b. 1 N = 1 $\frac{\text{kg·m}}{\text{s}^2}$ Look at the units in F = ma. m is in kg, a is in $\frac{\text{m}}{\text{s}^2}$
- c. $\underline{t_3}$. Velocity is the slope of a position graph and t_3 is the only time at which both curves have the same slope.
- d. More at A. The normal force is more at A because there isn't as much upward force from the string. Larger n means larger f by $f = \mu n$.
- e. More than $100\,\mathrm{N}$. $\overline{\mathrm{B}}$'s y component equals $100\,\mathrm{N}$, to balance the weight of the box. B itself would be more.


```
PHY 131
REVIEW OF 1-4
```

SOLUTIONS

() INITIALLY !

IT RISES UNTIL IT STOPS RISING. 1600 1 = 1226 M/s GIVEN: N; = 1226 M/s, N; = 0 ay = - 9.8 m/s2
FIND: AY

NFY = 15 3 + 20 , 04

 $0^{2} = 1226^{2} + 2(-9.8) \Delta Y$ $19.6 \Delta Y = 1226^{2} \implies \Delta Y = \frac{1.502 \times 10^{6}}{19.6} = \boxed{7.66 \times 10^{6} \text{ m}}$ $2) \Delta X = N.t + \frac{1}{2}at^{2} \implies \Delta X = \frac{1}{2}at^{2} \implies 2\Delta X = t^{2} \implies t = \sqrt{\frac{2}{a}}x$ 0 (STARTS AT REST)

FIRST APPLE: $\sqrt{\frac{2(8m)}{9.8\%^{\circ}}} = 1.2778 \text{ SEC}$

SECOND $\sqrt{\frac{2(3m)}{9.8}} + \sqrt{\frac{2(5m)}{9.8}} = .7825 + \frac{1.002}{4.8} = 1.7927 SEC.$

DIFFERENCE BETWEEN THEIR ARRIVALS: 1.7927-1.2778=,5149 = [.5155]

3) FORCES ON PULLEY :

 $\Sigma F_{\gamma} = 0$ $F \sin 50^{\circ} + F - 200 = 0$ $F \cos 50^{\circ} = 200$ $F = \frac{200}{\sin 50^{\circ} + 1} = 113 \text{ N}$

5. a. It should be an arrow three times as long as \vec{A} , pointing to the left.

b. They should each be 1 unit long, 1 cm in this case. \hat{i} should point in the x direction and \hat{j} in the y direction.

- c. i. Actual force. The net force toward the center of the curve.
- ii. <u>Inertia effect</u>. An object's tendency to follow a straight line makes it want to move outward instead of following the curve.
- d. <u>Up</u>. The scale reads how hard the scale is pushing against the weight. At point A, it pushes with a force greater than what it weighs, causing an upward acceleration.
- e. A constant velocity means an acceleration of zero. It doesn't matter if it is 30 m/s or some other speed, the important thing is that it is not changing.

