Phy 131 - Assignment 13

A.
$$\sum Q = 0$$

$$(m c \Delta T)_{tea} + (mL_f + m c \Delta T)_{ice} = 0$$

The tea just changes temperature. The ice changes state <u>and</u> changes temperature.

 m_{tea} : 1 liter = 1000 ml = 1000 cm³, and water has a density of 1 g/cm³.

Tea is basically water, so its specific heat is $c_{\text{water}} = 1.0 \frac{cal}{g \cdot c}$

Above 0°, the ice has melted. So, its specific heat is also water's, not ice's.

$$(1000~{\rm g})(~1.0\frac{\it cal}{g^{.\circ}\it c})(10^{\circ}~-~30^{\circ}) + m(79.6\frac{\it cal}{g}) + m~(~1.0\frac{\it cal}{g^{.\circ}\it c})(10^{\circ}~-~0^{\circ}) = 0$$

$$-20\ 000 + 79.6\ m + 10\ m = 0$$

$$89.6 \text{ m} = 20\ 000$$

$$m = 223 g$$

- B. 1. a. <u>Conduction & convection</u>. Heat can't flow by collisions of air molecules that aren't there, or by the circulation of air that isn't there.
- b. <u>Radiation</u>. A shiny surface not only absorbs radiation poorly, it also emits it poorly. (So, it doesn't let energy in or out.)

2. $\frac{dQ}{dt} = -kA \frac{dT}{dx} \implies \frac{\Delta Q}{\Delta t} = -kA \frac{\Delta T}{\Delta x}$ because it's a steady state.

 ΔQ / Δt is the same through both metals. (The heat going through the gold has nowhere else to go aside from continuing through the silver.)

(314)
$$A = (427) A = (427) A = (427) A = (314)(80-T) = (427)(T-30)$$

 $80-T = 1.36(T-30)$
 $80-T = 1.36T-40.8$
 $120.8 = 2.36T$
 $T = \frac{120.8}{2.36} = 51.2^{\circ}$

C. 1. The steam gives off a large amount of heat as it condenses. For example, 1/10 gram of water cooling from 100°C to 30°C (the temperature of your hand) gives off m c $\Delta T = 7$ calories. But 1/10 gram of 100°C steam gives off mL_v + m c $\Delta T = 61$ calories.

$$\begin{split} 2. & \sum Q = 0 \\ & (\text{m c } \Delta T)_{iron} + (\text{m c } \Delta T)_{water} = 0 \\ & (1.5 \text{ kg})(448 \frac{J}{kg \cdot ^{\circ} \textit{c}})(T_f - 600^{\circ}) + (20 \text{ kg})(4186 \frac{J}{kg \cdot ^{\circ} \textit{c}})(\ T_f - 25^{\circ}) = 0 \\ & 672 \ T_f - 403 \ 200 + 83 \ 720 \ T_f - 2 \ 093 \ 000 = 0 \\ & 84 \ 393 \ T_f = 2 \ 496 \ 200 \\ & T_f = \boxed{29.6^{\circ} C} \end{split}$$

Final diameter =
$$\mathcal{L}_0 + \Delta \mathcal{L}$$

Final diameters are equal:
$$(l_o + \Delta l)_{STEEL} = (l_o + \Delta l)_{BRONZE}$$

 $4.000_{cm} + (\propto l \Delta T)_{STEEL} = 3.994_{cm} + (\chi l \Delta T)_{BRONZE}$
 $4.000_{cm} + (11 \times 10^{-6})(4.000_{cm})(\Delta T) = 3.994_{cm} + (19 \times 10^{-6})(3.994)(\Delta T)$
 4.4×10^{-5}
 $4.000 - 3.994 = (7.5886 \times 10^{-5} - 4.400 \times 10^{-5}) \Delta T$
 $000 = (3.1886 \times 10^{-5}) \Delta T$

If you start at 20° and then change by 188° , $T_f = 20 + 188 = \boxed{208^{\circ}C}$

E. 1. The alcohol's temperature will increase about twice as much as the water's.

$$Q = m c \Delta T$$
same about half about twice

2.

The bullet puts both its kinetic energy and some heat energy into the ice.

$$\begin{split} \text{KE} &= \frac{1}{2} \text{mv}^2 = \frac{1}{2} (.003 \text{ kg}) (240 \text{ m/s})^2 = 86.4 \text{ J} \\ \text{Q} &= \text{m c} \Delta \text{T} = (.003 \text{ kg}) (128 \frac{\text{J}}{\text{kg}.^0\text{C}}) (30^{\circ}\text{C}) = 11.52 \text{ J} \\ \text{Total} &= 97.92 \text{ J} \end{split}$$
 From Q = mL_f , $\text{m} = \frac{\text{Q}}{\text{L}_f} = \frac{97.92 \text{ J}}{3.33 \times 10^5 \text{ J/kg}} = 2.94 \times 10^{-4} \text{kg}$ (.294 g)

F.1. Glass has a much lower thermal conductivity than metal, so heat flows along that rod much slower. (A popular wrong answer is that glass has a lower specific heat. The specific heat of glass is actually similar to aluminum's.)

2.

$$P = \sigma A e T^{4}$$

$$a \cdot e a = 4\pi r^{2} = 4\pi \left(6.96 \times 10^{8}\right)^{2} = 0$$

$$P = \left(5.67 \times 10^{8} \frac{\text{W}}{\text{m}^{2} \cdot \text{K}^{4}}\right) \left(6.087 \times 10^{18} \frac{\text{M}^{2}}{\text{M}^{2}}\right) \left(1 \times 10^{15}\right) \left(1 \times 10^{15}\right)$$

A watt is a joule per second. (That's its definition.) Multiply by the number of seconds in a day.