A. 1. Angle between sources barely resolved through a circular opening:

\[\theta = \tan^{-1} \left(\frac{\lambda}{2s} \right) = 1.22\times10^{-5} \text{rad} \]

Now from \(\theta \), find \(s \). Technically this is an isosceles triangle. However, because it is so long and thin, you can take a shortcut. The base angles are very close to 90°, so it makes only a very small error if you treat it like a right triangle.

\[\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{s}{29000 \text{ m}} \]

\[s = 29000 \tan(1.769 \times 10^{-5} \text{rad}) = 0.513 \text{ m} \]

(Be sure calculator is in radian mode.)

2. With \(n \) higher on one side of the film and lower on the other, there is destructive interference when

\[2nt = (m + \frac{1}{2})\lambda \]

For the minimum thickness, \(m = 0 \).

\[2 \times (1.30) t = \frac{1}{2} (500 \text{ nm}) \]

\[t = \frac{500}{2(1.3)} = 96.2 \text{ nm} \]

B. (a) Grating equation: \(m \lambda = d \sin \theta \)

(3) \((5.00 \times 10^{-7} \text{ m}) = d \sin 32^\circ \)

\[d = \frac{1.5 \times 10^{-6}}{\sin 32^\circ} = 2.83 \times 10^{-6} \text{ m} = 2.83 \times 10^{-4} \text{ cm} \]

Slits per cm = \(1 / (\text{cm per slit}) = 1 / (2.83 \times 10^{-4}) = 3.53 \times 10^3 \) ans.

(b) From the grating equation: \(\sin \theta = m \lambda / d \)

Try larger and larger values of \(m \) until \(\sin \theta \) passes 1. The sine function can't ever be more than 1, so that shows you the largest possible \(m \).
\[
\sin \theta = \frac{(5)(5.00 \times 10^{-7} \text{ m})}{(2.83 \times 10^{-6} \text{ m})} = 0.883 \quad \text{ok}
\]
\[
\sin \theta = \frac{(6)(5.00 \times 10^{-7} \text{ m})}{(2.83 \times 10^{-6} \text{ m})} = 1.06 \quad \text{nope.}
\]

ans: 5th order

C. 1. Oil’s n must be less than water’s. (and more than air’s.) If both rays reflect off a higher n, both undergo the same 180° phase shift. That way, interference is constructive when the thickness is nearly zero.

2.

\[
\tan \theta = \frac{A}{1.2 \text{ m}}
\]

Bright fringes are at \(d \sin \theta = m \lambda\), so \(\sin \theta = \frac{m \lambda}{d}\)

Because \(\theta\) is small, \(\tan \theta\) approximately equals \(\sin \theta\).

\[
\frac{A}{1.2 \text{ m}} = \frac{m \lambda}{d}
\]

\[m = 1 \text{ because first order}\]

\[A = (1.2 \text{ m}) = \frac{(1)(5.461 \times 10^{-7} \text{ m})}{0.0025 \text{ m}} = 0.00262 \text{ m}\]

D. 1. Destructive. The reason for coating a lens is to make it nonreflective. That is accomplished by having the two reflected rays destroy each other.

2. One ray reflects off a higher n (the soap film), the other off a lower n (the air under the film). This gives one ray a 180° phase shift and the other ray none. So, with a path difference of about zero, they are 180° out of phase.
3. Single slit maxima are where
 \[a \sin \theta = (m + \frac{1}{2}) \lambda \]
 \(a = \text{slit width} = .8 \text{ mm} \)
 \(m = 2 \) because second order

 Because \(\theta \) is very small, \(\sin \theta \approx \tan \theta = \frac{1}{4} \frac{mm}{800 \text{ mm}} = .00175 \)

 So, \((.0008 \text{ m})(.00175) = (2 + \frac{1}{2}) \lambda \)

 \[\lambda = \frac{(0.0008)(0.00175)}{2.5} = 5.60 \times 10^{-7} \text{ m} = 560 \text{ nm} \]

E. 1. i. \(a \) is the width of the slit.
 ii. \(d \) is its reciprocal. (cm per line = 1 / lines per cm.)

2. Destructively. The path difference of \(2\lambda \) would normally give constructive interference, but ray A has a 180\(^\circ\) phase shift when it is reflected, while B does not. Therefore, the waves are out of phase and cancel.

3. Constructive interference if path difference = \(m\lambda \).
 First order means \(m = 1 \).

 \[(1)\lambda = 16.12 - 14 = 2.12 \text{ cm} \]
\[F_A = 2 F_B \quad \text{Each } F \text{ is given by } k \frac{q_1 q_2}{r^2} \]

\[
\frac{k q_1 q_2}{r_A^2} = 2 \left[k \frac{q_1 q_2}{(3.3 \times 10^{-9} m)^2} \right]
\]

\[
\frac{2}{r_A^2} = \frac{(2)(3)}{(3.3 \times 10^{-9})^2}
\]

\[
(3.3 \times 10^{-9})^2 = r_A^2
\]

\[
\frac{3.3 \times 10^{-9}}{\sqrt{3}} = r_A
\]

\[
1.91 \times 10^{-9} m \quad \text{ANS}
\]