Verbal Problems

Objective: To translate a verbal expression into a variable expression.

Part I - Translating into variable expressions...

1. Fourteen more than the cube of x.

2. the product of q and seventeen

$$
q \cdot 17=17 q
$$

5. the total of 12 and six times a number

$$
12+6 x
$$

2. 18 less than twice a number

$$
\begin{gathered}
n-18 \\
2 n-18
\end{gathered}
$$

4. four-fifths of the difference between w and 10

$$
\frac{4}{5} \cdot(\omega-10)=\frac{4}{5}(\omega-10)
$$

6. seventeen less than the cube of x

$x^{3}-17$

Objective: Representing Two Unknowns in terms of a Single Variable.
Many times, it's helpful to express two different unknowns in terms of a single variable. A few examples to demonstrate. When solving problems that contain multiple unknowns, it's always beneficial to explicitly state, in algebraic terms, how the unknowns are represented.

Example 1. A number is three less than another number ...
What are the unknowns? the two numbers. \rightarrow larger $\#$, 5 mallee \neq
Let the larger number $=x$,
then, the smaller number $=x-3$
two unknowns in terms
of the same variable

Example 2. I have twice as many nickels as quarters ...
What are the unknowns? \# of niches, H of quarters...
\#f of nichols $=2 x$
\# of quarters $=x$

Example 3. The sum of two numbers is $12 \ldots$

What are the unknowns?

$$
\begin{aligned}
& \text { first } \#=x \\
& \text { Second } \#=12-x
\end{aligned}
$$

$$
\text { First }+ \text { seemed }=12
$$

$$
x+(12)-x=(12)
$$

Objective: Translating and Solving Equations
Translating equations is no more difficult than translating expressions. Some hints for translating equations:
\mapsto 1. find the equal sign first. This will be indicated by the phrase "is", or "is the same as", etc...
2. translate the easier side of the equation next.
3. translate the other side.
4. solve the resulting equation.

For example, translate and solve:

1. Fifteen less than a number is fie more than twice that number.

2. Six more than the product of x and five is equal to wenty-one.

$6+x \cdot 5=21$

$$
-6+5 x=21
$$

3. The difference between a number and three is one more than twice that number.

$$
\begin{gathered}
x-3=1+2 x \\
x=-4
\end{gathered}
$$

4. Recall, from the previous page, example 3: "The sum of two numbers is 12 ...", what if 3 times the first number is equal ty 2 times the second?

$$
\begin{aligned}
3 \cdot x \quad & =2 \cdot(12-x) \\
3 x & =2(12-x) \\
3 x & =24-2 x \\
\frac{-2 x}{5 x} & =24 \quad x=2 x
\end{aligned} \quad x=\frac{24}{5}=4.8
$$

